
The Dirty Dozen: Twelve Common Programming Mistakes

Bob Virgile
Robert Virgile Associates, Inc.

Overview

As programmers begin using the SAS® software,
their programs often contain many of the same
types of mistakes. A seemingly innocuous error,
such as omitting a semicolon, may generate results
ranging from an obvious error message to an
impossible to decipher error message to destroying
an existing dataset. This paper covers typical
errors made at an introductory level, including those
which produce no error message but still generate
the wrong result.

#1: Step-by-Step Execution

SAS programs execute one DATA or PROC step at
a time. A program cannot mix and match the
steps. Here is a typical attempt:

DATA PURCHASE;
SET SALES;
TOTAL = PRICE * QUANTITY;

PROC MEANS DATA=PURCHASE;
VAR TOTAL;

WITHTAX = TOTAL * (1 + TAXRATE);

PROC MEANS DATA=PURCHASE;
VAR WITHTAX;

The WITHTAX= assignment statement generates
an error message. The syntax would have been
correct if the statement had appeared in a DATA
step. However, the statement is part of PROC
MEANS. So the software generates an error
message saying that the assignment statement is
invalid or used out of proper order. The message
is only partially clear, since the statement is valid.
The problem is that it is used out of proper order.

#2: Informat with Columns

In an INPUT statement, informats must immediately
follow a variable name. A legal example:

INPUT @21 D_BIRTH MMDDYY8.;

An illegal version:

INPUT D_BIRTH 21-28 MMDDYY8.;

This type of error, while common, is not fatal. The
software generates an error message, and the error
message is somewhat clear. One hybrid exists, to
indicate the number of implied positions after a
decimal point. These two statements are both
legal, and are equivalent to one another:

INPUT AMOUNT 11-18 .2;
INPUT @11 AMOUNT 8.2;

Let's move on to situations where the error
message is difficult to decipher.

#3: Missing Semicolons

In this program, the software complains that the
ELSE statement has no matching IF / THEN
statement. What could be the problem?

DATA NEW;
INFILE RAWDATA;
INPUT NAME $16. /* First + Last */
 RACE 17 /* 1-digit code */
 AGE 18-20 /* Some oldies! */

IF AGE >= 65 THEN STATUS='SENIOR';
ELSE STATUS='JUNIOR';

You could stare at this one for a long time if you
didn't know that the topic is "missing semicolons."
When the INPUT statement is missing a semicolon,
the software "thinks" that the IF / THEN statement
is part of the INPUT statement. The words within
the IF / THEN statement are taken to be additional
variables which the INPUT statement should read.
The INPUT statement ends with the semicolon
before the ELSE statement. With no IF / THEN
statement, the ELSE statement is illegal.

The lesson here: when a statement appears to be
perfectly valid but still generates an error message,
check for a missing semicolon on the PREVIOUS
statement.

Consider a DATA step which creates three datasets
at the same time:

DATA MALES FEMALES BADDATA;
SET IN.EVERYONE;
IF GENDER='M' THEN OUTPUT MALES;
ELSE IF GENDER='F' THEN OUTPUT FEMALES;
ELSE OUTPUT BADDATA;

A perfectly legitimate program. But what about this
one:

DATA MILK
SET ALL.COWS;
CUPS = 4 * QUARTS;

Because of the missing semicolon on the DATA
statement, this program is asking that three
datasets be created in one DATA step: MILK, SET,
and ALL.COWS. The program contains no SET
statement, and does not read from any source of
data. Technically, however, these are legal
statements. So all three datasets on the DATA
statement get created with one observation and
two variables.

The dataset ALL.COWS just got destroyed! This is
a truly bad result! In addition, there would be no
error or warning messages. (The LOG would
contain a note about the number of observations in
each of the datasets.) In my opinion, the names
SET, MERGE, and UPDATE should be illegal as
dataset names to guard against this possibility.
Version 7 of the SAS software will provide such an
option. A global option will allow the words SET,
MERGE, UPDATE, and RETAIN (or other DATA
step key words as well) to trigger an error
message.

#4: Comments

Commenting errors fall into two categories: using
comments improperly and failing to use comments
where they should be used.

As a general rule, programs should contain a
comment at the beginning, showing (at a minimum)
the name and purpose of the program. Other
information, such as creation date, name of the
programmer, and relationship of the program to
other programs, can be added if appropriate.
Different styles exist, ranging from a single
comment statement to a formal block that looks
more like this:

** **
** Program: **
** **
** Date: **
** **
** Purpose: **
** **
** Programmer: **
** **
*****************************;

Despite the number of lines, this is still just a single
SAS comment statement beginning with an asterisk
and ending with a semicolon.

My personal preference is to use the first title line to
indicate the name of the program which created the
output. Many times, the output gets separated from
the program. It's nice to be able to look at some
output months down the road and to know
immediately which program created that output. As
long as the client finds the output acceptable in this
form, it makes good sense to reserve the first title
line for the program name.

Beginning errors of comission fall into a few
categories. First of all, it is perfectly okay to leave
a blank line in a SAS program. It's even a good
idea to use spacing (as well as indentation) to
make your programs easy to read. However, there
is no need to comment out that blank line.

Secondly, when using a comment statement, make
sure it ends with a semicolon. While this might be
overkill, it is acceptable:

* PROGRAM: PROJECT/LIB/PROG1.SAS;
* ;
* PURPOSE: ILLUSTRATE COMMENTS ;

DATA SENIORS;
INFILE RAWDATA;
INPUT NAME $ 1-20;

Of course, it would work equally well if the final two
asterisks and the first two semicolons were
removed. Omitting a final semicolon is a common
error:

* PROGRAM: PROJECT/LIB/PROG1.SAS

 PURPOSE: ILLUSTRATE COMMENTS

DATA SENIORS;
INFILE RAWDATA;
INPUT NAME $ 1-20;

Now the comment statement ends with the first
semicolon, after the word SENIORS. The software
complains that the INFILE statement is invalid or
used out of proper order, because the program
does not contain a DATA statement.

Finally, when using embedded comments, avoid
placing /* in columns 1 and 2 of the program.

DATA JUNIORS;
INFILE RAWDATA
/* SOMETIMES USE RAWDATA2 */;
INPUT NAME $ 1-20;

Under the MVS operating system, /* in columns 1
and 2 is considered to be job control language, not
part of SAS language. This program would
immediately end with an incomplete INFILE
statement. Even if you're not working under MVS,
it is usually a good idea to design your programs to
be portable from one machine to the next. So
avoid /* in columns 1 and 2.

#5: Lengths of Variables

The DATA step assigns a length to variables based
on the first mention of the variable. For example,
this code assigns GENDER a length of 4:

IF TYPE=1 THEN GENDER='MALE';
ELSE GENDER='FEMALE';

The order of the data has no effect on the length of
GENDER. The first value of TYPE could be 1 or 2.
For that matter, all values of TYPE could be 2.
Still, the variable GENDER has a length of 4.

This situation produces no error or warning
message. GENDER takes on values of MALE and
FEMA.

A straightforward solution exists. Assign a length to
GENDER BEFORE the IF / THEN statements:

LENGTH GENDER $ 6;

#6: Missing versus 99

Often, data contain a special code to indicate a
missing value. For example, a survey might ask,
"On a scale of 1 to 10, please rate the importance
of these items." The survey might record answers
of 1 to 10, and use the following codes for missing
answers:

97 = Don't know

98 = Refused to answer
99 = Want to check with spouse

These values cause havoc when processing the
data later. For example, to avoid averaging in the
nonresponsive answers with legitimate answers,
PROC MEANS would have to process just one
variable at a time:

PROC MEANS DATA=SURVEY;
VAR Q1;
WHERE Q1 NOT IN (97, 98, 99);

A better solution would be to recode these values
to missing values in the permanent dataset. The
SAS software supports 28 different missing values
(., .A through .Z, and ._), so you won't lose the
distinction between 97, 98, and 99:

IF Q1=97 THEN Q1=.A;
ELSE IF Q1=98 THEN Q1=.B;
ELSE IF Q1=99 THEN Q1=.C;

#7: $8 vs. $8.

These INPUT statements produce quite different
results:

INPUT @21 LASTNAME $8.;
INPUT @21 LASTNAME $8;

With a dot, 8. means "read 8 characters beginning
at the current location on the line (column 21)."
LASTNAME will contain the contents of columns 21
through 28. Without a dot, 8 means "read the
contents of column 8." Even when the INPUT
statement first moves to column 21 (@21),
LASTNAME will be whatever is in column 8. The
second INPUT statement really says, "First, move
to column 21. Then take the value of LASTNAME
from column 8." That's exactly the result, with no
error or warning message.

#8: Using ELSE

ELSE can cause trouble in a few ways. Failing to
use ELSE makes a program take slightly longer to
run. For example, the second set of statements
runs faster than the first:

IF GENDER='F' THEN TYPE='FEMALE';
IF GENDER='M' THEN TYPE='MALE';

IF GENDER='F' THEN TYPE='FEMALE';
ELSE IF GENDER='M' THEN TYPE='MALE';

Failing to use ELSE above is a minor error. The

only bad thing that happens is that the program
takes longer to run. When beginning to use ELSE,
programmers frequently forget to consider the
possibility of bad data:

IF GENDER='F' THEN TYPE='FEMALE';
ELSE TYPE='MALE';

GENDER may have contained values other than M
or F. Finally, in allowing for bad data, programmers
may use poor logic:

IF GENDER='F' THEN TYPE='FEMALE';
IF GENDER='M' THEN TYPE='MALE';
ELSE TYPE='??';

Since the program contains only one ELSE
statement, TYPE will never be FEMALE. Any
values of FEMALE get changed to ?? by the final
statement. Again, the solution is straightforward:

IF GENDER='F' THEN TYPE='FEMALE';
ELSE IF GENDER='M' THEN TYPE='MALE';
ELSE TYPE='??';

One final note. While the SAS software provides
extreme flexibility with respect to spacing and
indentation, there must be a blank before the word
THEN. Many letters (T, D, X, B) trigger a different
interpretation of your expression if they immediately
follow a closing quote.

#9: Testing Programs and Subsetting

In the testing stage, programmers often run on a
subset of the data until the bugs are worked out.
Beginning programmers run through a few
variations on subsetting technique, such as (from
worst to best):

IF _N_ <= 100;
IF _N_ > 100 THEN STOP;
OPTIONS OBS=100;

Still, all of these techniques can run into trouble
when trying to produce such a sample while also
using a subsetting IF. For example, the objective
here is to test on a sample of 10 observations:

OPTIONS OBS=100;

DATA SAMPLE;
INFILE RAWDATA;
INPUT NAME $ RANK $ SERIAL $;
IF RANK='GENERAL';

It turns out that the first 100 observations contain
zero observations having RANK='GENERAL'. So
the programmer tries again using:

OPTIONS OBS=1000;

Again, there are no generals in the first 1000
observations. So the programmer tries:

OPTIONS OBS=5000;

All of a sudden the program runs for a while,
because there were 2000 generals in the first 5000
observations. To get around this trial and error
approach, count the number of generals in the
DATA step:

DATA SAMPLE;
INFILE RAWDATA;
INPUT NAME $ RANK $ SERIAL $;
IF RANK='GENERAL';
N + 1;
OUTPUT;
IF N=100 THEN STOP;

Without an OUTPUT statement, SAMPLE would
contain only 99 observations. The STOP statement
means "right here, right now, without doing any
futher work." The DATA step would have ended
before outputting the final observation.

#10: Counting with PROC MEANS

Use each procedure for its intended purpose.
PROC FREQ counts, while PROC MEANS
computes statistics. The most common error in this
category is trying to count with PROC MEANS:

PROC MEANS DATA=SALES N;
VAR AMOUNT;
BY STATE;

versus

PROC FREQ DATA=SALES;
TABLES STATE;

Given that SALES contains the numeric variable
AMOUNT, and given that AMOUNT never has a
missing value, and given that SALES is in sorted
order by STATE, the N statistic in PROC MEANS
counts how many times each STATE appears in
the dataset.

Use PROC FREQ to count. Look at the complexity
of the programs as well as all the conditions that
have to be right for PROC MEANS to do the job
correctly. In addition, what happens if AMOUNT
takes on a missing value? PROC MEANS still
works. However, the N statistic no longer counts
the number of times each STATE appears. It
actually counts the number of nonmissing
AMOUNTs for each STATE. While there is no error
message, the output is incorrect.

#11: DISP=(NEW,CATLG,DELETE)

This is JCL, not SAS language. Although this error
applies to one operating system only, I have
included it here because its effects are quite difficult
to trace.

DISP=(NEW,CATLG,DELETE) is part of the
standard JCL DD statement to create a new SAS
data library. The three parameters mean:

NEW: the current status of the dataset. It doesn't
exist, so create one by that name

CATLG: when the job successfully completes,
catalog the dataset by name.

DELETE: if the job ends abnormally instead, delete
the dataset.

What happens when the program contains a SAS
error, such as:

DATAIN.LARGE;

Despite the SAS error, the MVS operating system
determines that the job completes successfully.
The third parameter (DELETE) only kicks in if their
was a SYSTEM error, not a SAS error. (For
example, the job requested 1 minute of CPU time
but actually hit that limit without completing.) So
the operating system creates the dataset, and
catalogs it by name.

Next, the programmer fixes the SAS error, changing
the statement to:

DATA IN.LARGE;

When the new job gets submitted (using the original
JCL), the operating system has a problem. The job
says DISP=NEW (create a new dataset under that
name), but a dataset already exists with that name.
The dataset may contain garbage, but it does exist.
Two things could happen at this point, depending

on how the systems programmers have set up the
operating system:

 1. The system may bounce out the job with a
JCL error. That's the preferable result.

 2. The job may run, but the system would
create a second, uncataloged version of the
dataset. The original version, containing
the garbage, remains cataloged by name.
So when a program refers to the dataset
later, it always finds the dataset containing
the garbage.

If the programmer notices the situation, it's easy
enough to correct. Either delete the dataset before
rerunning the job, or else change the JCL to read
DISP=OLD instead of DISP=NEW. However, this
error is extremely difficult to notice. The only
message is buried in the JCL log (not the SAS log)
with a small note next to the dataset name saying
NOT CATLGD 2. Even experienced programmers
rarely check that portion of the output. In fact,
many programmers inspect the output on the
terminal screen, discover there is no longer an error
message, and delete the job so it isn't even
available to inspect later.

On a related note, most MVS systems periodically
examine the disk packs for uncataloged datasets,
either deleting them or reporting them to the
owners. Usually (perhaps not if you are a
timesharing customer) you would not rack up a bill
forever for storing an uncataloged dataset.

#12: Failing to Check the LOG

Just because you get output, it doesn't mean the
program is correct. Check the SAS log to confirm
that the program ran as expected. Here are a few
situations where you will find output, but the
program is incorrect.

When a procedure uses a BY statement, the
software works with one value of the BY variable at
a time. It does not check the entire dataset to
make sure that the data are in sorted order.
Instead, output gets generated for values of the BY
variable until the software discovers an observation
is not in sorted order. At that point, the software
generates an error message on the SAS log. Net
result: there is output (albeit

incomplete) but the SAS log contains an error
message.

Some methods of execution involve submitting a
program.SAS file and automatically generating a
program.LOG and program.LIS (or LST) file. When
running jobs in this fashion, the previous execution
of the program already created a .LIS file. If a
revised job runs, it may contain errors and not
generate a .LIS file. However, the .LIS file still
exists with reasonable looking output, since it is left
over from the previous execution of a working
program.

Finally, the SAS log may contain notes about logic
errors which make the output incorrect. Consider
this program:

DATA INCOMES;
MERGE MOM POP;
BY ID;
TOTALINC = MOMINC + POPINC;

PROC MEANS DATA=INCOMES;
VAR TOTALINC;

When you inspect the output, it might look very
reasonable. But consider what would happen if
POPINC were actually a character variable that
usually took on numerals as a value, but could
occasionally be "N/A" or "> 100000." For most
observations, the software would convert the
numerals to the proper numeric value, and compute
TOTALINC. But when POPINC could not be
converted to numeric, TOTALINC would be missing.
PROC MEANS would automatically discard those
observations and print the average value of the
nonmissing TOTALINCs. How could you know this
was happening? Check the SAS log!

What should you check for? At a minimum, check
for error and warning messages. Verify that each
dataset contains approximately the expected
number of variables and observations. Check for
any notes indicating an unexpected action took
place, such as numeric to character conversion, or
missing values being generated as a result of
performing mathematical operations on missing
values. Finally, verify that each procedure
generated approximately the expected number of
pages of output.

All comments and questions are welcome! Contact
information:

Bob Virgile
Robert Virgile Associates, Inc.
3 Rock Street
Woburn, MA 01801
(781) 938-0307
virgile@mediaone.net

SAS is a registered trademark of SAS Institute Inc.

